Step of Proof: l_before_antisymmetry
11,40
postcript
pdf
Inference at
*
1
2
I
of proof for Lemma
l
before
antisymmetry
:
1.
T
: Type
2.
l
:
T
List
3.
x
:
T
4.
y
:
T
5. no_repeats(
T
;
l
)
6. [
x
;
y
]
l
7. [
y
;
x
]
l
8. [
x
;
x
]
l
False
latex
by
InteriorProof
(AllHyps (\i. ((((((((((RWO "no_repeats_iff" i)
CollapseTHEN (
CollapseTHEN (
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t
CollapseTHEN (
) inil_term)))
)
CollapseTHEN (Unfold `l_before` i))
)
CollapseTHEN (
CollapseTHEN (
InstHyp [
x
;
x
] i))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
CollapseTHEN ((Aut
),(first_nat 4:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (SimpHyp (-1)))
)
CollapseTHEN (Simp
)
latex
C
.
Definitions
t
T
,
P
&
Q
,
P
Q
,
x
before
y
l
,
x
:
A
.
B
(
x
)
,
False
,
A
,
P
Q
Lemmas
no
repeats
iff
origin